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Abstract  
Background 
The Generalized Hidden Markov Model (GHMM) has proven a useful framework for the task of 
computational gene prediction in eukaryotic genomes, due to its flexibility and probabilistic 
underpinnings. As the focus of the gene finding community shifts toward the use of homology 
information to improve prediction accuracy, extensions to the basic GHMM model are being 
explored as possible ways to integrate this homology information into the prediction process. 
Particularly prominent among these extensions are those techniques which call for the simultaneous 
prediction of genes in two or more genomes at once, thereby increasing significantly the 
computational cost of prediction and highlighting the importance of speed and memory efficiency 
in the implementation of the underlying GHMM algorithms. Unfortunately, the task of 
implementing an efficient GHMM-based gene finder is already a nontrivial one, and it can be 
expected that this task will only grow more onerous as our models increase in complexity.  

Results 
As a first step toward addressing the implementation challenges of these next-generation systems, 
we describe in detail two software architectures for GHMM-based gene finders, one comprising the 
common array-based approach, and the other a highly optimized algorithm which requires 
significantly less memory while achieving virtually identical speed. We then show how both of 
these architectures can be accelerated by a factor of two by optimizing their content sensors. We 
finish with a brief illustration of the impact these optimizations have had on the feasibility of our 
new homology-based gene finder, TWAIN. 

Conclusions 
In describing a number of optimizations for GHMM-based gene finders and making available two 
complete open-source software systems embodying these methods, it is our hope that others will be 
more enabled to explore promising extensions to the GHMM framework, thereby improving the 
state-of-the-art in gene prediction techniques. 



Background  
Generalized Hidden Markov Models have seen wide use in recent years in the field of 
computational gene prediction. A number of ab initio gene-finding programs are now available 
which utilize this mathematical framework internally for the modeling and evaluation of gene 
structure [1,2,3,4,5,6], and newer systems are now emerging which expand this framework by 
simultaneously modeling two genomes at once, in order to harness the mutually informative signals 
present in homologous gene structures from recently diverged species. As greater numbers of such 
genomes become available, it is tempting to consider the possibility of integrating all this 
information into increasingly complex models of gene structure and evolution.  

Notwithstanding our eagerness to utilize this expected flood of genomic data, methods have yet 
to be demonstrated which can perform such large-scale parallel analyses without requiring 
inordinate computational resources. In the case of Generalized Pair HMMs (GPHMMs), for 
example, the only systems in existence of which we are familiar make a number of relatively 
restrictive assumptions in order to reduce the computational complexity of the problem to a more 
tolerable level [7,8,(Majoros WM, Pertea M, Salzberg SL: Efficient implementation of a 
generalized pair hidden Markov model for comparative gene finding. Manuscript accepted for 
publication)]. Yet, even these systems are currently capable of handling no more than two genomes 
at once. If larger numbers of genomes are to be simultaneously integrated into the gene prediction 
process in a truly useful manner, then it is reasonable to suggest that new methods will be needed 
for efficient modeling of parallel gene structures and their evolution. Assuming for now that these 
methods are likely to continue to build on the basic GHMM framework, we feel it is important that 
efficient methods of GHMM implementation be properly disseminated for the benefit of those who 
are to work on this next generation of eukaryotic gene finders. 

 

Modeling genes with a GHMM 
A Hidden Markov Model (HMM) is a state-based generative model which transitions stochastically 
from state to state, emitting a single symbol from each state. A GHMM (or semi-Markov model) 
generalizes this scenario by allowing individual states to emit strings of symbols rather than one 
symbol at a time [9,10]. A GHMM is parameterized by its transition probabilities, its state duration 
(i.e., feature length) probabilities, and its state emission probabilities. These probabilities influence 
the behavior of the model in terms of which sequences are most likely to be emitted and which 
series of states are most likely to be visited by the model as it generates its output. 

Eukaryotic gene prediction entails the parsing of a DNA sequence into a set of putative CDSs 
(coding segments, hereafter referred to informally as “genes”) and their corresponding exon-intron 
structures [11]. Thus, the problem of eukaryotic gene prediction can be approximately stated as one 
of parsing sequences over the nucleotide alphabet Σ={A,C,G,T} according to the regular expression: 
 

Σ*(ATGΣ*(GTΣ*AG)*Σ*Γ)*Σ*, (1)
 
where the signals (start and stop codons, donors, and acceptors) have been underlined for clarity, 
and where Γ={TAG,TGA,TAA} represents a stop codon. (The actual nucleotides comprising these 
signals may differ between organisms; we have given the most common ones). An additional 
constraint not explicitly represented in Formula 1 is that the number of non-intron nucleotides 
between the start and stop codons of  a single gene must be a multiple of three, and furthermore, if 
these nucleotides are aggregated into a discrete number of nonoverlapping triples, or codons, then 
none of these codons must be a stop codon, other than the stop codon which terminates the gene. 
Note that the Σ* terms in Formula 1 permit the occurrence of pseudo-signals—e.g., an ATG triple 
which does not comprise a true start codon. Gene prediction with a GHMM thus entails parsing 
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with an ambiguous stochastic regular grammar; the challenge is to find the most probable parse of 
an input sequence, given the GHMM parameters and the input sequence. 

In the case of simple Hidden Markov Models, this optimal parsing (or decoding) problem can 
be solved with the well-known Viterbi algorithm, a dynamic programming algorithm with run time 
linear in the sequence length (for a fixed number of states) [12]. A modified Viterbi algorithm is 
required in the case of GHMMs, since each state can now emit more than one symbol at a time [2], 
resulting in the following optimization problem: 
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where φ is a parse of the sequence consisting of a series of states qi and state durations di, 0≤i≤n, 
with each state qi emitting subsequence Si of length di, so that the concatenation of all S0S1...Sn 
produces the complete output sequence S (but note that states q0 and qn are silent, producing no 
output). Pe(Si|qi,di) denotes the probability that state qi emits subsequence Si, given duration di; 
Pt(qi|qi-1) is the probability that the GHMM transitions from state qi-1 to state qi; and Pd(di|qi) is the 
probability that state qi has duration di. The argmax is over all parses of the DNA sequence into 
well-formed exon-intron structures; hence, the problem is one of finding the parse which 
maximizes the product in Equation 2. 

Implementation  
The PSA decoding algorithm 
The approach commonly used in GHMM gene finders for evaluating Equation 2 is to allocate 
several arrays, one per variable-length feature state, and to evaluate the arrays left-to-right along the 
length of the input sequence according to a dynamic programming algorithm, which we will detail 
below. We refer to this approach as the Prefix Sum Arrays (PSA) approach, since the values in the 
aforementioned arrays represent cumulative scores for prefixes of the sequence. 

Without loss of generality, let us consider the GHMM structure depicted in Figure 1. Although 
individual GHMMs will differ from this particular structure on specific points, the model in Figure 
1 is general enough to serve as a concrete example as we illustrate the operation of the algorithm.  

The diamonds denote the states for fixed length features (ATG=start codon, TAG=stop codon, 
GT=donor, AG=acceptor) and the circles denote states for variable length features (N=intergenic, 
I=intron, Esng=single exon, Einit=initial exon, Eint=internal exon, Efin=final exon). This model 
generates genes only on the forward strand of the DNA; to obtain a double-stranded model one can 
simply mirror the structure and link the forward and reverse models through a single merged 
intergenic state. 

Associated with each diamond state is a signal sensor such as a weight matrix (WMM) or some 
other fixed-length model (e.g., a WAM, WWAM, MDD tree, etc.) [13], and with each circular state 
is associated a variable-length content sensor, such as a Markov chain (MC) or an Interpolated 
Markov Model (IMM) [14].  
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Figure 1  - An example GHMM topology 
Diamonds represent signal states (for fixed-length features) and circles represent content states 
(for variable-length features). Allowable transitions are shown with arrows. ATG=start codon, 
TAG=stop codon, GT=donor splice site, AG=acceptor splice site, N=intergenic region, I=intron, 
Einit=initial exon, Eint=internal exon, Efin=final exon, Esng=single exon gene. The denoted machine 
operates by transitioning stochastically from state to state, emitting a gene feature of a particular 
type upon entering a given state. 

 
For the purposes of illustration, we will consider only the simplest of each model type, since the 

more complex model types commonly in use can in general be handled generically within the 
GHMM framework. The simplest fixed-length model is the WMM: 
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where xh..xh+n denotes the subsequence currently within a sliding (n+1)-element window, called the 
context window, and P(x|θ[i]) denotes the probability of nucleotide x occurring at position i within 
the window, for model θ. In practice, all of the probabilities described in all of these models are 
represented in log space (to reduce the incidence of numerical underflow on the computer), so that 
products of probabilities can be replaced with sums of their logs.  

The simplest variable-length model used in practice is the Markov chain. An nth-order Markov 
chain M for state qi would evaluate the probability P(Si|qi,di) of a putative feature Si according to: 
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where xj is the jth nucleotide in the sequence of the putative feature, di is the length of that feature, 
and PM(xj|xj-n..xj-1) is the probability of nucleotide xj conditional on the identities of its n 
predecessor nucleotides, according to content model M. As with the fixed-length model described 
above, this computation is typically done in log space. 

In scoring the signals and content regions of a putative gene parse, it will be important for us to 
carefully differentiate between the nucleotides which are scored by a signal sensor and those which 
are scored by a content sensor in a putative parse. As shown in Figure 2, the content and signal 
regions must partition the sequence into non-overlapping segments; allowing overlaps would result 
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in double-counting of nucleotide probabilities, which can lead to undesirable biases in the decoding 
algorithm. 

 

 

Figure 2  - Non-overlapping of content and signal sensors 
Fixed-length features such as start codons and donor sites are detected by signal sensors, which are 
used to score an entire context window surrounding the signal. To avoid double-counting, content 
sensors score only the nucleotides strictly between two signal sensors. In this example, the CTA at 
the end of the start codon sensor window and the CGA at the beginning of the donor site sensor 
window are not scored by the exon content sensor, even though they are part of the putative exon, 
since those bases are already scored by the signal sensors. 

 
The first step of the PSA algorithm is to compute a prefix sum array for each content sensor. 

For noncoding states (introns and intergenic) this can be formalized as shown in Figure 3. 
 

 
1 procedure init_nonphased(α,S,M) 
2   α[0]←log PM(x0); 
3   for i←1 to n-1 do 
4     α[i]←α[i-1]+log PM(xi|x0..xi-1); 
5   for i←n to L-1 do 
6     α[i]←α[i-1]+log PM(xi|xi-n..xi-1); 

 

Figure 3  - The init_nonphased() algorithm 
Initialization of a noncoding array α, given a sequence S=x0..xL-1 and nth-order Markov chain M. 
Note that all parameters are assumed passed by reference. The procedure initializes each array 
element to the log probability of the nucleotide at the corresponding position in the sequence, 
conditional on some number of preceding bases. 

 
In the case of exon states, it is important to capture the different statistical properties present in 

the three codon positions, referred to as phase 0, phase 1, and phase 2. We employ three Markov 
chains, M0, M1, and M2, corresponding to these three phases. Together, these three chains constitute 
a three-periodic Markov chain, M{0,1,2}. Exon states then require three arrays, each of which can be 
initialized using the procedure shown in Figure 4. 

In this way, we can initialize the three arrays αi,0, αi,1, and αi,2 for an exon state qi as follows: 
 
for ω←0 to 2 do 
  init_phased(αi,ω,S,M{0,1,2},ω); 
 
The individual chains M0, M1, and M2 comprising M{0,1,2} are applied in periodic fashion within the 
procedure init_phased() to compute conditional probabilities of successive nucleotides along the 
length of the array. The three arrays are phase-shifted by one from each other, with each element in 
the array storing the cumulative score of the prefix up to the current nucleotide. The first nucleotide 
is taken to be in phase ω for array αi,ω. Initializing the arrays for reverse-strand states can be 
achieved by simply reverse-complementing the DNA sequence and then reversing the order of the 
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resulting arrays (keeping in mind later that the reverse-strand arrays tabulate their sums from the 
right, rather than the left, and that ω is the phase of the last array entry rather than the first). 
 

 
1 procedure init_phased(σ,S,P{0,1,2},ω) 
2   σ[0]←log Pω(x0); 
3   for i←1 to n-1 do 
4     σ[i]←σ[i-1]+ 
5       log P(i+ i

6   for i←n to L-1 do 
ω)mod3(x |x0..xi-1); 

7     σ[i]←σ[i-1]+ 
8       log P(i+ω)mod3(xi|xi-n..xi-1); 

 

Figure 4  - The init_phased() algorithm 
Initialization of a single exon array σ, given a sequence S=x0..xL-1, a set of three Markov chains 
P{0,1,2}, and initial phase (i.e., phase of the first array element) ω. All parameters are assumed to be 
passed by reference. This procedure is similar to init_nonphased(), except that the 
conditional probabilities are computed in a phase-specific manner by the appropriate member of 
the three-periodic Markov chain. 

 
 

Once the prefix sum arrays have been initialized for all variable-duration states, we make 
another left-to-right pass over the input sequence to look for all possible matches to the fixed-
length states, via the signal sensors. In general, a signal sensor θ models the statistical biases of 
nucleotides at fixed positions surrounding a signal of a given type, such as a start codon. Whenever 
an appropriate consensus is encountered (such as ATG for the start codon sensor), the signal 
sensor’s fixed-length window is superimposed around the putative signal (i.e., with a margin of 
zero or more nucleotides on either side of the signal consensus) and evaluated to produce a 
logarithmic signal score RS=log P(xh..xh+n-1|θ), where h is the position of the beginning of the 
window and n is the window length. If signal thresholding is desired, RS can be compared to a pre-
specified threshold and those locations scoring below the threshold can be eliminated from 
consideration as putative signals.  

The remaining candidates for signals of each type are then inserted into a type-specific signal 
queue for consideration later as possible predecessors of subsequent signals in a putative gene 
model. As each new signal is encountered, the optimal predecessors for the signal are selected from 
among the current contents of the signal queues, using a scoring function described below. In the 
example (forward strand) GHMM depicted in Figure 1, the possible (predecessor→successor) 
patterns are: 

  
ATG→TAG 
ATG→GT 
GT→AG 
AG→GT 

AG→TAG 
TAG→ATG 

 
Associated with each of these patterns is a transition probability, Pt(qi|qi-1), which is included in 

the scoring of a possible predecessor; this probability can be accessed quickly by indexing into a 
two-dimensional array. The logarithmic transition score will be denoted RT(qi-1,qi)=log Pt(qi|qi-1). 

The distance from a prospective predecessor to the current signal is also included in the 
evaluation in the form of  Pd(di|qi) for distance (=duration) di and signal type (=state) qi. This 
probability can usually be obtained relatively quickly, depending on the representation of the 
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duration distributions. If the distributions have been fitted to a curve with a simple algebraic 
formula, then evaluation of the formula is typically a constant-time operation. If a histogram is 
instead maintained, then a binary search is typically required to find the histogram interval 
containing the given distance. We denote the logarithmic duration score RD(qi,qj)=log Pd(di|qi:j) 
where di is the length of the content region delimited by signals qi and qj, and qi:j is the variable-
length state corresponding to that content region. 

Following Equation 2, the final component of the scoring function is the emission probability 
Pe(Si|qi,di). For a fixed-length state, this is simply the score produced by the signal sensor. For a 
variable-length state qi, Pe can be evaluated very quickly by indexing into the prefix sum array αi,γ 
for state qi and phase γ at the appropriate indices for the two signals and simply performing 
subtraction: 

 
RC(spred,scur,ω) ← αi,γ[wpos(scur)-1]-αi,γ[wpos(spred)+wlen(spred)-1], (5)

 
where wpos(s) is the 0-based position (within the full input sequence) of the first nucleotide in the 
context window for signal s, wlen(s) is the length of the context window for signal s, and spred and 
scur are the predecessor and current signals, respectively. In the case of coding features, γ is the 
phase of the array and ω=(γ+pos(scur))mod3 is the phase of scur, for pos(scur) the position of the 
leftmost consensus base of scur. For reverse-strand features, since the prefix sum arrays tabulate 
their sums from the right instead of the left, the subtraction must be reversed: 

 
RC(spred,scur,ω) ← αi,γ[wpos(spred)+wlen(spred)]-αi,γ[wpos(scur)], (6)

 
and ω=(γ+L-pos(scur)-1)mod3, for L the sequence length. For noncoding features, the phases can 
be ignored when computing RC, since there is only one array per noncoding state.  

The resulting optimization function is: 
 

),,(),(),(),( jjiCjiDjiTiiI
i

ssRssRssRsRs
argmax γγ +++ , (7)

 
for current signal sj and predecessor signal si; RI(si,γi) denotes the logarithmic inductive score for 
signal si in phase γi. For forward-strand coding features, the phases γi and γj are related by: 

 
γi=(γj-∆)mod3, (8)

 
for ∆ the putative exon length, or, equivalently,  

 
γj=(γi+∆)mod3. (9)

 
These relations can be converted to the reverse strand by swapping + and -. For introns, γi=γj. For 
intergenic features, the phase will always be 0 for a forward strand signal and 2 for a reverse strand 
signal (since on the reverse strand the leftmost base of a 3-base signal would be in phase 2). 

The result of Equation 7 is the optimal predecessor for signal sj. This scoring function is 
evaluated for all appropriate predecessor signals, which are readily available in one or more queues, 
as mentioned above. A pointer called a trellis link is then created, pointing from the current signal 
to its optimal predecessor. In the case of those signals that can terminate an exon or an intron, three 
optimal predecessors must be retained, one for each phase. The inductive score RI(sj,γj) of the new 
signal sj is then initialized from the selected predecessor si as follows: 
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where RS(sj) is the logarithmic score produced by the signal sensor for signal sj. 
A final step to be performed at each position along the input sequence is to drop from each 

queue any signal that has been rendered unreachable from all subsequent positions due to 
intervening stop codons. Except for the final stop codon of a gene, in-phase (i.e., in phase 0) stop 
codons are generally not permitted in coding exons; for this reason, any potential stop codon 
(regardless of its signal score) will eclipse any preceding start codon or acceptor site (or, on the 
reverse strand, stop codon or donor site) in the corresponding phase. The algorithm shown in 
Figure 5 addresses this issue by dropping any fully eclipsed signal (i.e., eclipsed in all three phases) 
from its queue. 
 

 
1 procedure eclipse(G,p) 
2   foreach s∈G do 
3     ω←(pos(s)+len(s)-p)mod3; 
4     eclipseds[ω]←true; 
5      if eclipseds[(ω+1)mod3] and  
6        eclipseds[(ω+2)mod3] then 
7          drop(s,G); 

 

Figure 5  - The eclipse() algorithm 
Eclipsing signals in queue G when a stop codon has been encountered at position p. All 
parameters are assumed to be passed by reference. pos(s) is the position of the first base of the 
signal’s consensus sequence (e.g., the A in ATG). len(s) is the length of the signal’s consensus 
sequence (e.g., 3 for ATG). The procedure operates by computing the phase ω in which each signal 
is eclipsed by the stop codon, and then identifies those signals which are now eclipsed in all three 
phases. Any signal eclipsed in all three phases is then dropped from the queue, since any exon 
starting at that signal and extending up to the current position in the sequence would have an in-
frame stop codon. 

 
For the reverse strand, line 3 of eclipse() should be changed to: 
 

ω←(p-pos(s)-len(s)-1)mod3; 
 

where len(s) is the length of the consensus sequence for signal s (e.g., 3 for ATG). Note that by 
xmod3 we mean the positive remainder after division of x by 3; in some programming languages 
(such as C/C++), a negative remainder may be returned, in which case 3 should be added to the 
result. 

A special case of eclipsing which is not handled by eclipse() is that which occurs when a stop 
codon straddles an intron; this can be handled fairly simply by checking for such when considering 
each donor signal as a prospective predecessor for an acceptor signal (or vice-versa on the reverse 
strand). As each predecessor is evaluated, the bases immediately before the donor and immediately 
following the acceptor are examined, and if a stop codon is formed, the predecessor is no longer 
considered eligible for selection in the corresponding phase. 

As shown in Figure 5, when a signal has been eclipsed in all three phases it can be removed 
from its queue. In this way, as a signal falls further and further behind the current position in the 
sequence, the signal becomes more and more likely to be eclipsed in all three phases as randomly 
formed stop codons are encountered in the sequence, so that coding queues (e.g., those holding 
forward strand start codons and acceptors, or reverse strand donors and stop codons) tend not to 
grow without bound, but to be limited on average to some maximal load determined by the 
nucleotide composition statistics of the sequence. Because of this effect, the expected number of 
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signals which must be considered during predecessor evaluation can be considered effectively 
constant in practice.  

In the case of noncoding queues (e.g., those holding forward strand donors or stop codons, etc.), 
the assumption that noncoding features follow a geometric (i.e., exponentially decreasing) 
distribution allows us to limit these queues to a single element (per phase), because once a 
noncoding predecessor has been selected in a given phase, no other noncoding predecessor which 
has already been compared to the selected predecessor can ever become more attractive by virtue of 
its transition probability (since they are the same for signals of the same type, of which all the 
signals in a single queue are), its duration probability (since the geometric distribution ensures that 
their respective duration probabilities decrease at the same rate), nor its sequence probability (since 
any nucleotides encountered after seeing the two potential predecessors will affect their sequence 
scores identically). 

Because the coding and noncoding queues are effectively limited to a constant load (as argued 
above), the expected processing time at each nucleotide is O(1) in practice and therefore the entire 
algorithm up to this point requires time O(L) for an input sequence of length L and a GHMM with a 
fixed number of states. It will be seen that the traceback procedure described below also requires 
time O(L), and so this is the time complexity of the PSA decoding algorithm for normal eukaryotic 
genomes (i.e., those not especially lacking in random stop codons). 

Once the end of the sequence is reached, the optimal parse φ can be reconstructed by tracing 
back through the trellis links. In order for this to be done, a set of virtual, anchor signals (one of 
each type) must be instantiated at either terminus of the sequence (each having signal score RS=0). 
Those at the left terminus will have been entered into the appropriate queues at the very start of the 
algorithm as prospective targets for the first trellis links (and having inductive scores RI=0), and 
those at the right terminus are the last signals to be evaluated and linked into the trellis. The highest 
scoring of these right terminal anchor signals is selected (in its highest-scoring phase) as the 
starting point for the traceback procedure. Traceback consists merely of following the trellis links 
backward while adjusting for phase changes across exons, as shown in Figure 6. 

 
 

1 procedure traceback(s,ω) 
2   stack K; 
3   push s,K; 
4   while ¬left_terminus(s) do 
5     p←pred(s,ω); 
6     push p,K; 
7     if pe(p)∈{ATG,T then ω←0;  ty AG} 
8     elsif type(p)=AG then  
9       ω←(ω-exon_length(p,s))mod3; 
10  ←    s p;
11  return K; 

 

Figure 6  - The traceback() algorithm 
Reconstruction of the optimal parse by tracing back through trellis links. Parameters are the 
selected right-terminus signal s and its chosen phase ω. Returns a stack of signals constituting the 
optimal parse, with the top signal at the beginning of the parse and the bottom signal at the end. 
exon_length(p,s) denotes the number of coding nucleotides between p and s. The 
procedure operates by iteratively following the highest-scoring predecessor link from the current 
signal, adjusting the current phase as necessary when a trellis link corresponding to a coding 
feature is traversed. 

 
Modifications to Figure 6 for features on the reverse-strand include changing the AG on line 8 

to GT, changing the subtraction on line 9 to addition, and changing the 0 on line 7 to 2. 
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It should be clear from the foregoing that the space requirements of the PSA decoding 
algorithm are O(L|Q|) for sequence length L and variable-duration state set Q. If, for example, array 
elements are 8-byte double-precision floating point numbers, then the GHMM depicted in Figure 1 
would require 14 prefix sum arrays (4 exon states × 3 phases + 1 intergenic state + 1 intron state), 
resulting in a memory requirement of at least 112 bytes per nucleotide. Generalizing this GHMM to 
handle both DNA strands would increase this to 216 bytes per nucleotide, so that processing of a 1 
Mb sequence would require at least 216 Mb of RAM just for the arrays. Adding states for 5’ and 3’ 
untranslated regions would increase this to 248 Mb of RAM for a 1 Mb sequence, or over 1 Gb of 
RAM for a 5 Mb sequence. For the purposes of comparative gene finding on multiple organisms 
with large genes, these requirements seem less than ideal, especially when one considers the 
possibility of adding yet other states. 

The memory requirements can be reduced in several ways. First, Markov chains can be shared 
by similar states. For example, the intron and intergenic states can share a single Markov chain 
trained on pooled noncoding DNA, and all the exon states can use the same three-periodic Markov 
chain trained on pooled coding DNA. To our knowledge, the extent to which this optimization 
affects the accuracy of the resulting gene finder has not been systematically investigated, though it 
is commonly used in practice. Second, the models for exons can be modified so as to utilize 
likelihood ratios instead of probabilities. If the models for exons are re-parameterized to compute: 
 

)|(
)|(

noncodingSP
codingSP , (11)

 
and the noncoding models are modified to compute: 

 

)|(
)|(

noncodingSP
noncodingSP , (12)

 
then the latter can be seen to be unnecessary, since it will always evaluate to 1. Such a modification 
is valid and will have no effect on the mathematical structure of the optimization problem given in 
Equation 2 as long as the denominator is evaluated using a Markov chain or other multiplicative 
model, since the effect of the denominator on inductive scores will then be constant across all 
possible predecessors for any given signal. Using such ratios allows us to skip the evaluation of all 
noncoding states, so that the number of prefix sum arrays required for a double-stranded version of 
the GHMM in Figure 1 would be only 6 (assuming the previous optimization is applied as well), 
corresponding to the three exon phases on two strands. Furthermore, to the extent that these 
likelihood ratios are expected to have a relatively limited numerical range, lower-precision floating 
point numbers can be used, or the ratios could instead be multiplied by an appropriate scaling factor 
and then stored as 2-byte integers [2]. This is a significant reduction, though asymptotically the 
complexity is still O(L|Q|). An additional consideration is that the log-likelihood strategy makes 
unavailable (or at least inseparable) the raw coding and noncoding scores, which might be desired 
later for some unforeseen application. 

A third method of reducing the memory requirements is to eliminate the prefix sum arrays 
altogether, resulting in what we call the Dynamic Score Propagation (DSP) algorithm. 

The DSP decoding algorithm 
Informally, the DSP algorithm is similar to the PSA algorithm except that rather than storing all 
nucleotide scores for all content sensors in a set of prefix sum arrays, we instead store only the 
specific elements of those arrays that are needed for assessing prospective predecessors during the 
trellis formation. Associated with each signal is a “propagator” variable which represents the log 
probability of the highest-scoring partial parse up to and including this signal. As processing 
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proceeds left-to-right along the sequence, these propagators are updated so as to extend these 
partial parses up to the current position. In this way, the inductive score of each signal is 
incrementally propagated up to each potential successor signal that is encountered during 
processing; when a signal is eclipsed in all phases by stop codons (i.e., removed from its respective 
queue), propagation of that signal’s inductive score halts, since further updates would be useless 
beyond that point. Because no prefix sum arrays are allocated, and because the signal queues are 
effectively limited in size (as argued previously), the expected memory requirements of DSP will 
be seen to be O(L+|Q|), where the constant factor associated with the L term is small, reflecting 
only the number of signals per nucleotide emitted by the signal sensors, as well as the memory 
required to store the sequence itself. 

Let us introduce some notation. We define a propagator π to be a 3-element array, indexed 
using the notation π[i] for 0≤i≤2; when dealing with multiple propagators, πj[i] will denote element 
i of the jth propagator. 

Each signal si will now have associated with it a propagator, denoted πi. For signals which can 
be members of multiple queues (such as start codons, which can be members of both the initial 
exon queue and the single exon queue), the signal will have one propagator per queue, but it will be 
clear from the context to which propagator we refer. Each queue will also have a propagator 
associated with it, though for the sake of reducing ambiguity we will refer to these as accumulators 
and represent them with the symbol α. The purpose of the accumulators is to reduce the number of 
updates to individual signal propagators; otherwise, every signal propagator in every queue would 
need to be updated at every position in the input sequence. The accumulator for a given queue will 
accumulate additions to be made to the propagators of the signals currently in the queue. The 
update of signal propagators from their queue’s accumulator is delayed as long as possible, as 
described below. Accumulator scores are initialized to zero, as are the propagator scores for the left 
terminus anchor signals; the general case of propagator initialization will be described shortly. 

Updating of a propagator π from an accumulator α is simple in the case of a noncoding queue: 
 

∀0≤ω≤2 π[ω]←π[ω]+α[0]. (13)
 

For coding queues, the update must take into account the location of the signal s associated with the 
propagator π, in order to synchronize the periodic association between phase and array index: 

 
∀0≤ω≤2 π[ω]←π[ω]+α[(ω-pos(s)-len(s))mod3], (14)

 
or, on the reverse strand: 
 

∀0≤ω≤2 π[ω]←π[ω]+α[(ω+pos(s)+len(s))mod3]. (15)
 
Given a content sensor M, a coding accumulator can be updated according to the rule: 

 
∀0≤ω≤2 α[ω]←α[ω]+log PM[(ω+f)mod3](xf), (16)

 
or, on the reverse strand: 
 

∀0≤ω≤2 α[ω]←α[ω]+log PW[(ω-f)mod3](xf), (17)
 

where f is the position of the current nucleotide xf, PM[ω](xf) is the probability assigned to xf by the 
content sensor M in phase ω, and W is the reverse-complementary model to M which computes the 
probability of its parameter on the opposite strand and taking contexts from the right rather than 
from the left. This update occurs once at each position along the input sequence. Use of f provides 
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an absolute frame of reference when updating the accumulator. This is necessary because the 
accumulator for a queue has no intrinsic notion of phase: unlike an individual signal, a queue is not 
rooted at any particular location relative to the sequence.  

For noncoding queues, only the 0th element of the accumulator must be updated: 
 

α[0]←α[0]+log PM(xf). (18)
 

All that remains is to specify the rule for selecting an optimal predecessor and using it to 
initialize a new signal’s propagator. We first consider new signals which terminate a putative exon. 
Let si denote the predecessor under consideration and sj the new signal. Denote by ∆ the length of 
the putative exon. Then on the forward strand, we can compare predecessors with respect to phase 
ω via the scoring function RCI+RD+RT, where RD and RT are the duration and transition scores 
described earlier and RCI includes the content score and the inductive score from the previous 
signal: 

 
∀0≤ω≤2 RCI(si,ω)←πi[(ω-∆)mod3]. (19)

 
On the reverse strand we have: 
 

∀0≤ω≤2 RCI(si,ω)←πi[(ω+∆)mod3]. (20)
 
For introns it is still necessary to separate the three phase-specific scores to avoid greedy behavior, 
though the phase does not change across an intron, so no ∆ term is necessary: 
 

∀0≤ω≤2 RCI(si,ω)←πi[ω]. (21)
 
When the preceding feature is intergenic we need only refer to phase zero of the preceding stop 
codon: 
 

RCI(si,ω)←πi[0], (22)
 
or, on the reverse strand, phase 2 of the preceding start codon (since the leftmost base of the 
reverse-strand start codon will reside in phase 2).  

Once an optimal predecessor with score RCI+RD+RT is selected with respect to a given phase ω, 
the appropriate element of the new signal’s propagator can be initialized directly: 
 

πj[ω]←RCI(si,ω)+RD(si,sj)+RT(si,sj)+RS(sj), (23)
 
where RS(sj)=P(context(sj)|θj) is the score assigned to the context window of the new signal sj by the 
appropriate signal sensor θj. An exception to Equation 23 occurs when ω is not a valid phase for 
signal sj (e.g., phase 1 for a start codon), in which case we instead set πj[ω] to -∞. 

One final complication arises from the fact that the algorithm, as we have presented it, does not 
permit adjacent signals in a prospective parse to have overlapping signal sensor windows; to allow 
such would be to permit double-counting of nucleotide probabilities, thereby biasing the 
probabilistic scoring function. It is a simple matter to reformulate the algorithm so that signal 
sensors score only the two or three consensus nucleotides of the signals under consideration; this 
would allow adjacent signals in a prospective parse to be as close as possible without actually 
overlapping (i.e., a single exon consisting of the sequence ATGTAG would be permitted, even if the 
start codon and stop codon context windows overlapped). However, doing so might be expected to 
decrease gene finder accuracy, for two reasons: (1) statistical biases occurring at fixed positions 
relative to signals of a given type can in general be better exploited by a signal sensor specifically 
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trained on such positions than by a content sensor trained on data pooled from many positions at 
variable distances from the signal, and (2) in the case of Markov chains and Interpolated Markov 
Models, probability estimates for nucleotides immediately following a signal can be inadvertently 
conditioned on the few trailing nucleotides of the preceding feature (assuming the chain has a 
sufficiently high order), even though the models are typically not trained accordingly. For these 
reasons, we prefer to use signal sensors which impose a moderate margin around their respective 
signals, both to detect any biologically relevant biases which might exist within those margins, and 
to ensure that content sensors condition their probabilities only on nucleotides within the same 
feature. 

Given the foregoing, it is necessary to utilize a separate “holding queue” for signals which have 
recently been detected by their signal sensors but which have context windows still overlapping the 
current position in the DSP algorithm. The reason for this is that propagator updates via Equations 
13-15 must not be applied to signals having context windows overlapping any nucleotides already 
accounted for in the accumulator scores, since to do so would be to double-count probabilities. It is 
therefore necessary to observe the following discipline. 

Associated with each signal queue Gi there must be a separate holding queue, Hi. When a signal 
is instantiated by a signal sensor it is added to the appropriate Hi rather than to Gi. As the algorithm 
advances along the sequence, at each new position we must examine the contents of each holding 
queue Hi to identify any signal having a context window which has now passed completely to the 
left of the current position. If one or more such signals are identified, then we first update the 
propagators of all the signals in the main queue Gi using Equations 13-15, then zero-out the values 
of the accumulator αi for that queue, and then allow the recently passed signals to graduate from Hi 
to Gi. Observe that at this point all the signals in Gi have in their propagators scores which have 
effectively been propagated up to the same point in the sequence, and that point is immediately left 
of the current position; this invariant is necessary for the proper operation of the algorithm. All 
content sensors are then evaluated at the current position and their resulting single-nucleotide 
scores are used to update the accumulators for their respective queues. Finally, whenever it 
becomes necessary to evaluate the signals in some queue Gi as possible predecessors of a new 
signal, we must first update the propagators of all the elements of Gi as described above, so that the 
comparison will be based on fully propagated scores. 

Equivalence of DSP and PSA 
We now give a proof that DSP is mathematically equivalent to PSA, since it may not be entirely 

obvious from the foregoing description. We will consider only the forward strand cases; the proof 
for the reverse strand cases can be derived by a series of trivial substitutions in the proof below.  

To begin, we show by induction that the signal propagator πj[ω] for signal sj is initialized to the 
PSA inductive score RI(sj,ω). For the basis step, recall that the left terminus anchor signals were 
initialized to have zero scores in both PSA and DSP, regardless of whether a given signal began a 
coding or noncoding feature. In the case of coding features, substituting Equation 19 into Equation 
23 yields: 
 

πj[ω]←πi[(ω-∆)mod3]+RD(si,sj)+RT(si,sj)+RS(sj). (24)
 
According to Equation 10, this initialization will result in πj[ω]=RI(sj,ω) only if: 

 
πi[(ω-∆)mod3]=RI(si,γi)+RC(si,sj,ω), (25)

 
where γi=(ω-∆)mod3 according to Equation 8. At the time that signal sj is instantiated by its signal 
sensor, πi has been propagated up to e=wpos(sj)-1, the nucleotide just before the leftmost position 
of the context window for sj. By the inductive hypothesis, πi[γi] was initialized to RI(si,γi). This 
initialization occurred at the time when the current DSP position was at the beginning of the 
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predecessor’s context window. Note, however, that πi effectively began receiving updates at 
position b=wpos(si)+wlen(si), the position immediately following the end of the signal’s context 
window, at which point si graduated from its holding queue. Thus, πi[γi] will have accumulated 
content scores for positions b through e, inclusive. In order to establish Equation 25, we need to 
show that these accumulations sum to precisely RC(si,sj,ω). 

Substituting Equation 16 into Equation 14 we get the following formula describing propagator 
updates as if they came directly from content sensor M: 

 
∀0≤ω≤2 π[ω]←π[ω]+log PM[(ω+∆)mod3](xf), (26)

 
where ∆=f-(pos(si)+len(si)) is the distance between the rightmost end of signal si and the current 
position f in the DSP algorithm. Let us introduce the notation:  

 
F(i,j,ω)=∑k=i..jlog PM[(ω+k)mod3](xk). (27)

 
Using this notation, πi[γi] has since its initialization accumulated F(b,e,γi-pos(si)-len(si)); this can 
be verified by expanding this expression via Equation 27 and observing that the result equals a 
summation of the log term in Equation 26 over f=b to e. Looking at init_phased(), it should be 
obvious that the effect of lines 5 and 8 will be that:  

 
αi,γ[h] = ∑k=0..hlog PM[(k+γ)mod3](xk) = F(0,h,γ). (28)

 
According to Equation 5, showing that πi[γi] has accumulated RC(si,sj,ω) is therefore equivalent to: 

 
F(b,e,ψ) = F(0,wpos(sj)-1,γ) - F(0,wpos(si)+wlen(si)-1,γ), (29)

 
where ψ=γi-pos(si)-len(si) and γ=ω-pos(sj). Equivalently: 

 
F(b,e,ψ) = F(0,e,γ) – F(0,b-1,γ). (30)

 
To see that ψ≡γ(mod3), observe that pos(sj)-(pos(si)+len(si))=∆, the length of the putative exon 
(possibly shortened by three bases, in the case where si is a start codon), and further that γi-ω≡-
∆(mod3) according to Equation 8, so that ψ-γ≡∆-∆≡0(mod3). Thus, Equation 30 is equivalent to: 

 
F(b,e,γ) = F(0,e,γ) – F(0,b-1,γ), (31)

 
which can be established as a tautology by simple algebra after expansion with Equation 27. This 
shows that the signal propagator for signal sj is initialized to the PSA inductive score RI(sj,ω), and 
thus establishes the inductive step of the proof in the case of coding features. 

To see that the above arguments also hold for noncoding features, note that Equation 21 
simplifies Equation 25 to: 

 
πi[ω]=RI(si,ω)+RC(si,sj), (32)

 
that Equations 13 and 18 combine to simplify Equation 26 to:  

 
∀0≤ω≤2 π[ω]←π[ω]+log PM(xf), (33)

 
and that lines 4 and 6 of init_nonphased() cause: 
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αi[h] = ∑k=0..hlog PM(xk) = FNC(0,h), (34)

 
for FNC(i,j)=∑k=i..jlog PM(xk). We can thus reformulate Equation 29 as: 

 
FNC(b,e) = FNC(0,wpos(scur)-1) - FNC(0,wpos(spred)+wlen(spred)-1), (35)

 
or, equivalently: 

 
FNC(b,e) = FNC(0,e) – FNC(0,b-1), (36)

 
which is again a tautology. In the interests of brevity, we leave it up to the reader to verify that the 
above arguments still apply when the noncoding features are intergenic, thereby invoking Equation 
22 rather than Equation 21 in formulating Equation 31. 

To see that the selection of optimal predecessors is also performed identically in the two 
algorithms, note that the PSA criterion given in Equation 7 is equivalent to the argmax(RCI+RD+RT 
) criterion of DSP as long as RCI(si,ω)=RC(si,sj,ω)+RI(si,γi) at the time the optimal predecessor is 
selected, which we have in fact already shown by establishing Equation 25. 

Thus, DSP and PSA build identical trellises; application of the same traceback() procedure 
should therefore produce identical gene predictions. 

Fast decoding of Markov chains 
Markov chains are typically implemented in GHMM-based gene finders using hash tables, due to 
the simplicity of such an implementation. Thus, for a given Markov chain M we may utilize a hash 
table which associates the probability PM(xj|xj-n..xj-1) with the sequence xj-n..xj. Although hash tables 
provide a relatively efficient solution for this task, they are wasteful in the sense that as we evaluate 
the chain on successive nucleotides in a sequence, we repeatedly manipulate preceding nucleotides 
in forming successive substrings to be indexed into the hash table.  

A much faster (and much more elegant) solution is to employ a Finite State Machine (FSM) in 
which states exist for all possible sequences of length n+1 or less, and where the state having label 
xj-n..xj emits the probability PM(xj|xj-n..xj-1), for nth-order Markov chain M. In this way, the transition 
probabilities of the Markov chain become the state emissions of the FSM. During a single left-to-
right scan of a sequence, each base requires only a single two-dimensional array indexing operation 
to access the desired probability, and a single integer value store operation to remember the identity 
of the new state. When compared to the typical regime of arithmetic and bit-shift operations over 
an (n+1)-element string that would be required for a typical hash function, the difference can be 
significant.  

Implementing this optimization is fairly straightforward, both for conventional Markov chains 
and for Interpolated Markov Models, whether homogeneous or three-periodic. Central to the 
method is a means of mapping between state labels and integer state identifiers for use in indexing 
into the transition table. The base-4 number system can be utilized for this purpose, assuming a 
nucleotide mapping such as ∇={A↔0, C↔1, G↔2, T↔3}. To account for lower-order states, 
define: 

 

∑
−

=

=
1

0
4)(

L

i

iLB , (37)

 
which gives the total number of strings of length less than L. Converting a string S=x0..xL-1 to base-
4 can be accomplished as follows: 
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Now a string S can be mapped to a state index using: 
 

state(S)=B(|S|)+λ(S), (39)
 
where |S| denotes the length of S. 

Given this integer↔label mapping and an nth-order Markov chain in hash table format, the FSM 
state emissions can be initialized by indexing state labels into the hash table to obtain the Markov 
chain transition probabilities. The transition table can be initialized fairly simply by noting that the 
successor of state x0..xL-1 upon seeing symbol s is x1..xL-1s if L=n+1, or x0..xL-1s for L<n+1. A 
model for the reverse strand can be handled by applying this scheme in reverse, so that the state 
with label xj-n..xj emits the probability PM(xj-n|xj-n+1..xj), and the lower-order states are reserved for 
the end of the sequence rather than the beginning. 

Results  
Table 1 shows the memory and time requirements for two GHMM gene finders, one using the 

PSA algorithm and the other the DSP algorithm, on a 922 Kb sequence. Note that the DSP gene 
finder has 31 states, while the PSA gene finder explicitly evaluates only 6 states, so that they both 
give a ratio of 2.8 seconds per state on this sequence, while the ratio of memory per state is 14 Mb 
for the PSA gene finder and 0.95 Mb for the DSP gene finder. Thus, the DSP and PSA algorithms 
appear to consume the same amount of time per state, while DSP requires only a fraction of the 
memory (per state) as PSA. 
 

 RAM 
(Mb) 

RAM/state
(Mb) 

Time, 
min:sec 

seconds/ 
state 

31-state DSP 29  0.95 1:28 2.8 
6-state PSA 84  14 0:17 2.8 

Table 1  - Space and time requirements for two gene finders 
Two gene finders, the 31-state DSP gene finder TIGRscan, and the 6-state PSA gene finder 
GlimmerHMM, were run on a 922 Kb sequence. The DSP gene finder used raw probabilities and 
the PSA gene finder used log-likelihood ratios. The DSP implementation required less memory, 
both in total and per state, than the PSA implementation. Although the PSA implementation 
required less total time, the DSP implementation required the same amount of time per state, so 
that for a given gene finder with a fixed number of states, DSP decoding can be expected to be 
fully as fast as PSA decoding. 

 
 
Table 2 shows the results of applying the FSM optimization to a DSP gene finder to accelerate 

its content sensors. As can be seen from the table, the FSM approach reduces execution time by 
more than half (as compared to a hash table implementation), while also reducing total RAM usage. 
The DSP/FSM configuration reported here utilized both conventional Markov chains as well as 
Interpolated Markov Models, both represented using FSMs. Note that the hashing software used for 
comparison was a very efficient implementation which used native C character arrays; in particular, 
we did not use the C++ Standard Template Library (STL) implementations of string and hash, due 
to efficiency concerns regarding the re-copying of string arguments to the hash function. Our 
custom string hashing implementation was found to be much faster than the STL implementation 
(data not shown). Accordingly, one can expect an FSM implementation to show even greater gains 
as compared to an STL-based hashing implementation. 
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 time (min:sec) total RAM 
DSP/Hash 1:15 53 Mb 
DSP/FSM 0:34 44 Mb 

Table 2  - Efficiency of Markov chain implementations 
Execution time for a 31-state GHMM gene finder utilizing hash tables or FSMs for its content 
sensors, applied to a 1.8 Mb sequence. The FSM implementation was over twice as fast as the 
hash table implementation, and required significantly less memory. 

 
We utilized our DSP-based gene finder TIGRscan [5] in the construction of our syntenic gene 

finder TWAIN, a Generalized Pair HMM which performs gene prediction in two genomes 
simultaneously. TWAIN operates by invoking a modified version of TIGRscan to build a directed 
acyclic graph of all high-scoring parses of each of the two input sequences. Early experiments 
indicated that these parse graphs could be quite large in practice and may therefore require a 
significant portion of available RAM for their storage. In addition, the dynamic programming 
matrix used by TWAIN promised to be large as well. It was in anticipation of this problem that we 
were prompted to develop TIGRscan using the DSP architecture, to minimize the memory 
requirements of the underlying GHMM, thereby freeing the remaining available memory for use by 
the rest of the machinery within TWAIN.  

As a result of these and other optimizations (such as our use of a sparse matrix representation 
for TWAIN’s dynamic programming algorithm) we were able to apply TWAIN’s gene prediction 
component to a pair of fungal genomes (Aspergillus fumigatus and A. nidulans) while consuming 
under 50 Mb of RAM, whereas an earlier prototype of this system applied to the same input data 
routinely exhausted all available memory on a computer with 1 Gb of RAM. We are hopeful that 
through the use of optimizations such as those described here we will be able to apply TWAIN to 
other pairs of genomes with longer genes, and possibly extend the program to handle more than 
two species simultaneously. 

Conclusions  
In describing a number of optimizations for GHMM-based gene finders and making available two 
complete open-source software systems embodying these methods, it is our hope that others will be 
more enabled to explore promising extensions to the GHMM framework, thereby improving the 
state-of-the-art in gene prediction techniques. 

Availability and requirements  
 
    * Project name: TIGRscan, GlimmerHMM 
    * Project home page: http://www.tigr.org/software/pirate
    * Operating system(s): Linux/UNIX 
    * Programming language: C/C++ 
    * Other requirements: compiled using gcc 3.3.3 
    * License: Artistic License, see http://www.opensource.org  
    * Any restrictions to use by non-academics: terms of Artistic License 
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