
Accepted for publication in:

Efficient decoding algorithms for generalized hidden Markov
model gene finders

William H. Majoros1§, Mihaela Pertea1, Arthur L. Delcher1, Steven L. Salzberg1

1Bioinformatics Department, The Institute for Genomic Research, 9712 Medical Center Drive,
Rockville, MD, USA
§Corresponding author

Abstract
Background
The Generalized Hidden Markov Model (GHMM) has proven a useful framework for the task of
computational gene prediction in eukaryotic genomes, due to its flexibility and probabilistic
underpinnings. As the focus of the gene finding community shifts toward the use of homology
information to improve prediction accuracy, extensions to the basic GHMM model are being
explored as possible ways to integrate this homology information into the prediction process.
Particularly prominent among these extensions are those techniques which call for the simultaneous
prediction of genes in two or more genomes at once, thereby increasing significantly the
computational cost of prediction and highlighting the importance of speed and memory efficiency
in the implementation of the underlying GHMM algorithms. Unfortunately, the task of
implementing an efficient GHMM-based gene finder is already a nontrivial one, and it can be
expected that this task will only grow more onerous as our models increase in complexity.

Results
As a first step toward addressing the implementation challenges of these next-generation systems,
we describe in detail two software architectures for GHMM-based gene finders, one comprising the
common array-based approach, and the other a highly optimized algorithm which requires
significantly less memory while achieving virtually identical speed. We then show how both of
these architectures can be accelerated by a factor of two by optimizing their content sensors. We
finish with a brief illustration of the impact these optimizations have had on the feasibility of our
new homology-based gene finder, TWAIN.

Conclusions
In describing a number of optimizations for GHMM-based gene finders and making available two
complete open-source software systems embodying these methods, it is our hope that others will be
more enabled to explore promising extensions to the GHMM framework, thereby improving the
state-of-the-art in gene prediction techniques.

Background
Generalized Hidden Markov Models have seen wide use in recent years in the field of
computational gene prediction. A number of ab initio gene-finding programs are now available
which utilize this mathematical framework internally for the modeling and evaluation of gene
structure [1,2,3,4,5,6], and newer systems are now emerging which expand this framework by
simultaneously modeling two genomes at once, in order to harness the mutually informative signals
present in homologous gene structures from recently diverged species. As greater numbers of such
genomes become available, it is tempting to consider the possibility of integrating all this
information into increasingly complex models of gene structure and evolution.

Notwithstanding our eagerness to utilize this expected flood of genomic data, methods have yet
to be demonstrated which can perform such large-scale parallel analyses without requiring
inordinate computational resources. In the case of Generalized Pair HMMs (GPHMMs), for
example, the only systems in existence of which we are familiar make a number of relatively
restrictive assumptions in order to reduce the computational complexity of the problem to a more
tolerable level [7,8,(Majoros WM, Pertea M, Salzberg SL: Efficient implementation of a
generalized pair hidden Markov model for comparative gene finding. Manuscript accepted for
publication)]. Yet, even these systems are currently capable of handling no more than two genomes
at once. If larger numbers of genomes are to be simultaneously integrated into the gene prediction
process in a truly useful manner, then it is reasonable to suggest that new methods will be needed
for efficient modeling of parallel gene structures and their evolution. Assuming for now that these
methods are likely to continue to build on the basic GHMM framework, we feel it is important that
efficient methods of GHMM implementation be properly disseminated for the benefit of those who
are to work on this next generation of eukaryotic gene finders.

Modeling genes with a GHMM
A Hidden Markov Model (HMM) is a state-based generative model which transitions stochastically
from state to state, emitting a single symbol from each state. A GHMM (or semi-Markov model)
generalizes this scenario by allowing individual states to emit strings of symbols rather than one
symbol at a time [9,10]. A GHMM is parameterized by its transition probabilities, its state duration
(i.e., feature length) probabilities, and its state emission probabilities. These probabilities influence
the behavior of the model in terms of which sequences are most likely to be emitted and which
series of states are most likely to be visited by the model as it generates its output.

Eukaryotic gene prediction entails the parsing of a DNA sequence into a set of putative CDSs
(coding segments, hereafter referred to informally as “genes”) and their corresponding exon-intron
structures [11]. Thus, the problem of eukaryotic gene prediction can be approximately stated as one
of parsing sequences over the nucleotide alphabet Σ={A,C,G,T} according to the regular expression:

Σ*(ATGΣ*(GTΣ*AG)*Σ*Γ)*Σ*, (1)

where the signals (start and stop codons, donors, and acceptors) have been underlined for clarity,
and where Γ={TAG,TGA,TAA} represents a stop codon. (The actual nucleotides comprising these
signals may differ between organisms; we have given the most common ones). An additional
constraint not explicitly represented in Formula 1 is that the number of non-intron nucleotides
between the start and stop codons of a single gene must be a multiple of three, and furthermore, if
these nucleotides are aggregated into a discrete number of nonoverlapping triples, or codons, then
none of these codons must be a stop codon, other than the stop codon which terminates the gene.
Note that the Σ* terms in Formula 1 permit the occurrence of pseudo-signals—e.g., an ATG triple
which does not comprise a true start codon. Gene prediction with a GHMM thus entails parsing

 2

with an ambiguous stochastic regular grammar; the challenge is to find the most probable parse of
an input sequence, given the GHMM parameters and the input sequence.

In the case of simple Hidden Markov Models, this optimal parsing (or decoding) problem can
be solved with the well-known Viterbi algorithm, a dynamic programming algorithm with run time
linear in the sequence length (for a fixed number of states) [12]. A modified Viterbi algorithm is
required in the case of GHMMs, since each state can now emit more than one symbol at a time [2],
resulting in the following optimization problem:

∏
=

−=

=

=

=

=

n

i
iidiitiiie

optimal

qdPqqPdqSPargmax

PSP

SP

SP
SP

SP

1
1)|()|(),|(

)()|(maxarg

),(maxarg
)(
),(maxarg

)|(maxarg

φ

φφφ

φφ

φ
φ

φφφ

 (2)

where φ is a parse of the sequence consisting of a series of states qi and state durations di, 0≤i≤n,
with each state qi emitting subsequence Si of length di, so that the concatenation of all S0S1...Sn
produces the complete output sequence S (but note that states q0 and qn are silent, producing no
output). Pe(Si|qi,di) denotes the probability that state qi emits subsequence Si, given duration di;
Pt(qi|qi-1) is the probability that the GHMM transitions from state qi-1 to state qi; and Pd(di|qi) is the
probability that state qi has duration di. The argmax is over all parses of the DNA sequence into
well-formed exon-intron structures; hence, the problem is one of finding the parse which
maximizes the product in Equation 2.

Implementation
The PSA decoding algorithm
The approach commonly used in GHMM gene finders for evaluating Equation 2 is to allocate
several arrays, one per variable-length feature state, and to evaluate the arrays left-to-right along the
length of the input sequence according to a dynamic programming algorithm, which we will detail
below. We refer to this approach as the Prefix Sum Arrays (PSA) approach, since the values in the
aforementioned arrays represent cumulative scores for prefixes of the sequence.

Without loss of generality, let us consider the GHMM structure depicted in Figure 1. Although
individual GHMMs will differ from this particular structure on specific points, the model in Figure
1 is general enough to serve as a concrete example as we illustrate the operation of the algorithm.

The diamonds denote the states for fixed length features (ATG=start codon, TAG=stop codon,
GT=donor, AG=acceptor) and the circles denote states for variable length features (N=intergenic,
I=intron, Esng=single exon, Einit=initial exon, Eint=internal exon, Efin=final exon). This model
generates genes only on the forward strand of the DNA; to obtain a double-stranded model one can
simply mirror the structure and link the forward and reverse models through a single merged
intergenic state.

Associated with each diamond state is a signal sensor such as a weight matrix (WMM) or some
other fixed-length model (e.g., a WAM, WWAM, MDD tree, etc.) [13], and with each circular state
is associated a variable-length content sensor, such as a Markov chain (MC) or an Interpolated
Markov Model (IMM) [14].

 3

Figure 1 - An example GHMM topology
Diamonds represent signal states (for fixed-length features) and circles represent content states
(for variable-length features). Allowable transitions are shown with arrows. ATG=start codon,
TAG=stop codon, GT=donor splice site, AG=acceptor splice site, N=intergenic region, I=intron,
Einit=initial exon, Eint=internal exon, Efin=final exon, Esng=single exon gene. The denoted machine
operates by transitioning stochastically from state to state, emitting a gene feature of a particular
type upon entering a given state.

For the purposes of illustration, we will consider only the simplest of each model type, since the

more complex model types commonly in use can in general be handled generically within the
GHMM framework. The simplest fixed-length model is the WMM:

∏
=

++ =
n

i
ihnhh ixPxxP

0

])[|()|..(θθ , (3)

where xh..xh+n denotes the subsequence currently within a sliding (n+1)-element window, called the
context window, and P(x|θ[i]) denotes the probability of nucleotide x occurring at position i within
the window, for model θ. In practice, all of the probabilities described in all of these models are
represented in log space (to reduce the incidence of numerical underflow on the computer), so that
products of probabilities can be replaced with sums of their logs.

The simplest variable-length model used in practice is the Markov chain. An nth-order Markov
chain M for state qi would evaluate the probability P(Si|qi,di) of a putative feature Si according to:

∏∏
−

=
−−

−

=
−

1

1

1

0
10)..|()..|(

id

nj
jnjjM

n

j
jjM xxxPxxxP , (4)

where xj is the jth nucleotide in the sequence of the putative feature, di is the length of that feature,
and PM(xj|xj-n..xj-1) is the probability of nucleotide xj conditional on the identities of its n
predecessor nucleotides, according to content model M. As with the fixed-length model described
above, this computation is typically done in log space.

In scoring the signals and content regions of a putative gene parse, it will be important for us to
carefully differentiate between the nucleotides which are scored by a signal sensor and those which
are scored by a content sensor in a putative parse. As shown in Figure 2, the content and signal
regions must partition the sequence into non-overlapping segments; allowing overlaps would result

 4

in double-counting of nucleotide probabilities, which can lead to undesirable biases in the decoding
algorithm.

Figure 2 - Non-overlapping of content and signal sensors
Fixed-length features such as start codons and donor sites are detected by signal sensors, which are
used to score an entire context window surrounding the signal. To avoid double-counting, content
sensors score only the nucleotides strictly between two signal sensors. In this example, the CTA at
the end of the start codon sensor window and the CGA at the beginning of the donor site sensor
window are not scored by the exon content sensor, even though they are part of the putative exon,
since those bases are already scored by the signal sensors.

The first step of the PSA algorithm is to compute a prefix sum array for each content sensor.

For noncoding states (introns and intergenic) this can be formalized as shown in Figure 3.

1 procedure init_nonphased(α,S,M)
2 α[0]←log PM(x0);
3 for i←1 to n-1 do
4 α[i]←α[i-1]+log PM(xi|x0..xi-1);
5 for i←n to L-1 do
6 α[i]←α[i-1]+log PM(xi|xi-n..xi-1);

Figure 3 - The init_nonphased() algorithm
Initialization of a noncoding array α, given a sequence S=x0..xL-1 and nth-order Markov chain M.
Note that all parameters are assumed passed by reference. The procedure initializes each array
element to the log probability of the nucleotide at the corresponding position in the sequence,
conditional on some number of preceding bases.

In the case of exon states, it is important to capture the different statistical properties present in

the three codon positions, referred to as phase 0, phase 1, and phase 2. We employ three Markov
chains, M0, M1, and M2, corresponding to these three phases. Together, these three chains constitute
a three-periodic Markov chain, M{0,1,2}. Exon states then require three arrays, each of which can be
initialized using the procedure shown in Figure 4.

In this way, we can initialize the three arrays αi,0, αi,1, and αi,2 for an exon state qi as follows:

for ω←0 to 2 do
 init_phased(αi,ω,S,M{0,1,2},ω);

The individual chains M0, M1, and M2 comprising M{0,1,2} are applied in periodic fashion within the
procedure init_phased() to compute conditional probabilities of successive nucleotides along the
length of the array. The three arrays are phase-shifted by one from each other, with each element in
the array storing the cumulative score of the prefix up to the current nucleotide. The first nucleotide
is taken to be in phase ω for array αi,ω. Initializing the arrays for reverse-strand states can be
achieved by simply reverse-complementing the DNA sequence and then reversing the order of the

 5

resulting arrays (keeping in mind later that the reverse-strand arrays tabulate their sums from the
right, rather than the left, and that ω is the phase of the last array entry rather than the first).

1 procedure init_phased(σ,S,P{0,1,2},ω)
2 σ[0]←log Pω(x0);
3 for i←1 to n-1 do
4 σ[i]←σ[i-1]+
5 log P(i+ i

6 for i←n to L-1 do
ω)mod3(x |x0..xi-1);

7 σ[i]←σ[i-1]+
8 log P(i+ω)mod3(xi|xi-n..xi-1);

Figure 4 - The init_phased() algorithm
Initialization of a single exon array σ, given a sequence S=x0..xL-1, a set of three Markov chains
P{0,1,2}, and initial phase (i.e., phase of the first array element) ω. All parameters are assumed to be
passed by reference. This procedure is similar to init_nonphased(), except that the
conditional probabilities are computed in a phase-specific manner by the appropriate member of
the three-periodic Markov chain.

Once the prefix sum arrays have been initialized for all variable-duration states, we make
another left-to-right pass over the input sequence to look for all possible matches to the fixed-
length states, via the signal sensors. In general, a signal sensor θ models the statistical biases of
nucleotides at fixed positions surrounding a signal of a given type, such as a start codon. Whenever
an appropriate consensus is encountered (such as ATG for the start codon sensor), the signal
sensor’s fixed-length window is superimposed around the putative signal (i.e., with a margin of
zero or more nucleotides on either side of the signal consensus) and evaluated to produce a
logarithmic signal score RS=log P(xh..xh+n-1|θ), where h is the position of the beginning of the
window and n is the window length. If signal thresholding is desired, RS can be compared to a pre-
specified threshold and those locations scoring below the threshold can be eliminated from
consideration as putative signals.

The remaining candidates for signals of each type are then inserted into a type-specific signal
queue for consideration later as possible predecessors of subsequent signals in a putative gene
model. As each new signal is encountered, the optimal predecessors for the signal are selected from
among the current contents of the signal queues, using a scoring function described below. In the
example (forward strand) GHMM depicted in Figure 1, the possible (predecessor→successor)
patterns are:

ATG→TAG
ATG→GT
GT→AG
AG→GT

AG→TAG
TAG→ATG

Associated with each of these patterns is a transition probability, Pt(qi|qi-1), which is included in

the scoring of a possible predecessor; this probability can be accessed quickly by indexing into a
two-dimensional array. The logarithmic transition score will be denoted RT(qi-1,qi)=log Pt(qi|qi-1).

The distance from a prospective predecessor to the current signal is also included in the
evaluation in the form of Pd(di|qi) for distance (=duration) di and signal type (=state) qi. This
probability can usually be obtained relatively quickly, depending on the representation of the

 6

duration distributions. If the distributions have been fitted to a curve with a simple algebraic
formula, then evaluation of the formula is typically a constant-time operation. If a histogram is
instead maintained, then a binary search is typically required to find the histogram interval
containing the given distance. We denote the logarithmic duration score RD(qi,qj)=log Pd(di|qi:j)
where di is the length of the content region delimited by signals qi and qj, and qi:j is the variable-
length state corresponding to that content region.

Following Equation 2, the final component of the scoring function is the emission probability
Pe(Si|qi,di). For a fixed-length state, this is simply the score produced by the signal sensor. For a
variable-length state qi, Pe can be evaluated very quickly by indexing into the prefix sum array αi,γ
for state qi and phase γ at the appropriate indices for the two signals and simply performing
subtraction:

RC(spred,scur,ω) ← αi,γ[wpos(scur)-1]-αi,γ[wpos(spred)+wlen(spred)-1], (5)

where wpos(s) is the 0-based position (within the full input sequence) of the first nucleotide in the
context window for signal s, wlen(s) is the length of the context window for signal s, and spred and
scur are the predecessor and current signals, respectively. In the case of coding features, γ is the
phase of the array and ω=(γ+pos(scur))mod3 is the phase of scur, for pos(scur) the position of the
leftmost consensus base of scur. For reverse-strand features, since the prefix sum arrays tabulate
their sums from the right instead of the left, the subtraction must be reversed:

RC(spred,scur,ω) ← αi,γ[wpos(spred)+wlen(spred)]-αi,γ[wpos(scur)], (6)

and ω=(γ+L-pos(scur)-1)mod3, for L the sequence length. For noncoding features, the phases can
be ignored when computing RC, since there is only one array per noncoding state.

The resulting optimization function is:

),,(),(),(),(jjiCjiDjiTiiI
i

ssRssRssRsRs
argmax γγ +++ , (7)

for current signal sj and predecessor signal si; RI(si,γi) denotes the logarithmic inductive score for
signal si in phase γi. For forward-strand coding features, the phases γi and γj are related by:

γi=(γj-∆)mod3, (8)

for ∆ the putative exon length, or, equivalently,

γj=(γi+∆)mod3. (9)

These relations can be converted to the reverse strand by swapping + and -. For introns, γi=γj. For
intergenic features, the phase will always be 0 for a forward strand signal and 2 for a reverse strand
signal (since on the reverse strand the leftmost base of a 3-base signal would be in phase 2).

The result of Equation 7 is the optimal predecessor for signal sj. This scoring function is
evaluated for all appropriate predecessor signals, which are readily available in one or more queues,
as mentioned above. A pointer called a trellis link is then created, pointing from the current signal
to its optimal predecessor. In the case of those signals that can terminate an exon or an intron, three
optimal predecessors must be retained, one for each phase. The inductive score RI(sj,γj) of the new
signal sj is then initialized from the selected predecessor si as follows:

 7

)(),,(),(),(),(),(jSjjiCjiDjiTiiIjjI sRssRssRssRsRsR ++++← γγγ , (10)

where RS(sj) is the logarithmic score produced by the signal sensor for signal sj.
A final step to be performed at each position along the input sequence is to drop from each

queue any signal that has been rendered unreachable from all subsequent positions due to
intervening stop codons. Except for the final stop codon of a gene, in-phase (i.e., in phase 0) stop
codons are generally not permitted in coding exons; for this reason, any potential stop codon
(regardless of its signal score) will eclipse any preceding start codon or acceptor site (or, on the
reverse strand, stop codon or donor site) in the corresponding phase. The algorithm shown in
Figure 5 addresses this issue by dropping any fully eclipsed signal (i.e., eclipsed in all three phases)
from its queue.

1 procedure eclipse(G,p)
2 foreach s∈G do
3 ω←(pos(s)+len(s)-p)mod3;
4 eclipseds[ω]←true;
5 if eclipseds[(ω+1)mod3] and
6 eclipseds[(ω+2)mod3] then
7 drop(s,G);

Figure 5 - The eclipse() algorithm
Eclipsing signals in queue G when a stop codon has been encountered at position p. All
parameters are assumed to be passed by reference. pos(s) is the position of the first base of the
signal’s consensus sequence (e.g., the A in ATG). len(s) is the length of the signal’s consensus
sequence (e.g., 3 for ATG). The procedure operates by computing the phase ω in which each signal
is eclipsed by the stop codon, and then identifies those signals which are now eclipsed in all three
phases. Any signal eclipsed in all three phases is then dropped from the queue, since any exon
starting at that signal and extending up to the current position in the sequence would have an in-
frame stop codon.

For the reverse strand, line 3 of eclipse() should be changed to:

ω←(p-pos(s)-len(s)-1)mod3;

where len(s) is the length of the consensus sequence for signal s (e.g., 3 for ATG). Note that by
xmod3 we mean the positive remainder after division of x by 3; in some programming languages
(such as C/C++), a negative remainder may be returned, in which case 3 should be added to the
result.

A special case of eclipsing which is not handled by eclipse() is that which occurs when a stop
codon straddles an intron; this can be handled fairly simply by checking for such when considering
each donor signal as a prospective predecessor for an acceptor signal (or vice-versa on the reverse
strand). As each predecessor is evaluated, the bases immediately before the donor and immediately
following the acceptor are examined, and if a stop codon is formed, the predecessor is no longer
considered eligible for selection in the corresponding phase.

As shown in Figure 5, when a signal has been eclipsed in all three phases it can be removed
from its queue. In this way, as a signal falls further and further behind the current position in the
sequence, the signal becomes more and more likely to be eclipsed in all three phases as randomly
formed stop codons are encountered in the sequence, so that coding queues (e.g., those holding
forward strand start codons and acceptors, or reverse strand donors and stop codons) tend not to
grow without bound, but to be limited on average to some maximal load determined by the
nucleotide composition statistics of the sequence. Because of this effect, the expected number of

 8

signals which must be considered during predecessor evaluation can be considered effectively
constant in practice.

In the case of noncoding queues (e.g., those holding forward strand donors or stop codons, etc.),
the assumption that noncoding features follow a geometric (i.e., exponentially decreasing)
distribution allows us to limit these queues to a single element (per phase), because once a
noncoding predecessor has been selected in a given phase, no other noncoding predecessor which
has already been compared to the selected predecessor can ever become more attractive by virtue of
its transition probability (since they are the same for signals of the same type, of which all the
signals in a single queue are), its duration probability (since the geometric distribution ensures that
their respective duration probabilities decrease at the same rate), nor its sequence probability (since
any nucleotides encountered after seeing the two potential predecessors will affect their sequence
scores identically).

Because the coding and noncoding queues are effectively limited to a constant load (as argued
above), the expected processing time at each nucleotide is O(1) in practice and therefore the entire
algorithm up to this point requires time O(L) for an input sequence of length L and a GHMM with a
fixed number of states. It will be seen that the traceback procedure described below also requires
time O(L), and so this is the time complexity of the PSA decoding algorithm for normal eukaryotic
genomes (i.e., those not especially lacking in random stop codons).

Once the end of the sequence is reached, the optimal parse φ can be reconstructed by tracing
back through the trellis links. In order for this to be done, a set of virtual, anchor signals (one of
each type) must be instantiated at either terminus of the sequence (each having signal score RS=0).
Those at the left terminus will have been entered into the appropriate queues at the very start of the
algorithm as prospective targets for the first trellis links (and having inductive scores RI=0), and
those at the right terminus are the last signals to be evaluated and linked into the trellis. The highest
scoring of these right terminal anchor signals is selected (in its highest-scoring phase) as the
starting point for the traceback procedure. Traceback consists merely of following the trellis links
backward while adjusting for phase changes across exons, as shown in Figure 6.

1 procedure traceback(s,ω)
2 stack K;
3 push s,K;
4 while ¬left_terminus(s) do
5 p←pred(s,ω);
6 push p,K;
7 if pe(p)∈{ATG,T then ω←0; ty AG}
8 elsif type(p)=AG then
9 ω←(ω-exon_length(p,s))mod3;
10 ← s p;
11 return K;

Figure 6 - The traceback() algorithm
Reconstruction of the optimal parse by tracing back through trellis links. Parameters are the
selected right-terminus signal s and its chosen phase ω. Returns a stack of signals constituting the
optimal parse, with the top signal at the beginning of the parse and the bottom signal at the end.
exon_length(p,s) denotes the number of coding nucleotides between p and s. The
procedure operates by iteratively following the highest-scoring predecessor link from the current
signal, adjusting the current phase as necessary when a trellis link corresponding to a coding
feature is traversed.

Modifications to Figure 6 for features on the reverse-strand include changing the AG on line 8

to GT, changing the subtraction on line 9 to addition, and changing the 0 on line 7 to 2.

 9

It should be clear from the foregoing that the space requirements of the PSA decoding
algorithm are O(L|Q|) for sequence length L and variable-duration state set Q. If, for example, array
elements are 8-byte double-precision floating point numbers, then the GHMM depicted in Figure 1
would require 14 prefix sum arrays (4 exon states × 3 phases + 1 intergenic state + 1 intron state),
resulting in a memory requirement of at least 112 bytes per nucleotide. Generalizing this GHMM to
handle both DNA strands would increase this to 216 bytes per nucleotide, so that processing of a 1
Mb sequence would require at least 216 Mb of RAM just for the arrays. Adding states for 5’ and 3’
untranslated regions would increase this to 248 Mb of RAM for a 1 Mb sequence, or over 1 Gb of
RAM for a 5 Mb sequence. For the purposes of comparative gene finding on multiple organisms
with large genes, these requirements seem less than ideal, especially when one considers the
possibility of adding yet other states.

The memory requirements can be reduced in several ways. First, Markov chains can be shared
by similar states. For example, the intron and intergenic states can share a single Markov chain
trained on pooled noncoding DNA, and all the exon states can use the same three-periodic Markov
chain trained on pooled coding DNA. To our knowledge, the extent to which this optimization
affects the accuracy of the resulting gene finder has not been systematically investigated, though it
is commonly used in practice. Second, the models for exons can be modified so as to utilize
likelihood ratios instead of probabilities. If the models for exons are re-parameterized to compute:

)|(
)|(

noncodingSP
codingSP , (11)

and the noncoding models are modified to compute:

)|(
)|(

noncodingSP
noncodingSP , (12)

then the latter can be seen to be unnecessary, since it will always evaluate to 1. Such a modification
is valid and will have no effect on the mathematical structure of the optimization problem given in
Equation 2 as long as the denominator is evaluated using a Markov chain or other multiplicative
model, since the effect of the denominator on inductive scores will then be constant across all
possible predecessors for any given signal. Using such ratios allows us to skip the evaluation of all
noncoding states, so that the number of prefix sum arrays required for a double-stranded version of
the GHMM in Figure 1 would be only 6 (assuming the previous optimization is applied as well),
corresponding to the three exon phases on two strands. Furthermore, to the extent that these
likelihood ratios are expected to have a relatively limited numerical range, lower-precision floating
point numbers can be used, or the ratios could instead be multiplied by an appropriate scaling factor
and then stored as 2-byte integers [2]. This is a significant reduction, though asymptotically the
complexity is still O(L|Q|). An additional consideration is that the log-likelihood strategy makes
unavailable (or at least inseparable) the raw coding and noncoding scores, which might be desired
later for some unforeseen application.

A third method of reducing the memory requirements is to eliminate the prefix sum arrays
altogether, resulting in what we call the Dynamic Score Propagation (DSP) algorithm.

The DSP decoding algorithm
Informally, the DSP algorithm is similar to the PSA algorithm except that rather than storing all
nucleotide scores for all content sensors in a set of prefix sum arrays, we instead store only the
specific elements of those arrays that are needed for assessing prospective predecessors during the
trellis formation. Associated with each signal is a “propagator” variable which represents the log
probability of the highest-scoring partial parse up to and including this signal. As processing

 10

proceeds left-to-right along the sequence, these propagators are updated so as to extend these
partial parses up to the current position. In this way, the inductive score of each signal is
incrementally propagated up to each potential successor signal that is encountered during
processing; when a signal is eclipsed in all phases by stop codons (i.e., removed from its respective
queue), propagation of that signal’s inductive score halts, since further updates would be useless
beyond that point. Because no prefix sum arrays are allocated, and because the signal queues are
effectively limited in size (as argued previously), the expected memory requirements of DSP will
be seen to be O(L+|Q|), where the constant factor associated with the L term is small, reflecting
only the number of signals per nucleotide emitted by the signal sensors, as well as the memory
required to store the sequence itself.

Let us introduce some notation. We define a propagator π to be a 3-element array, indexed
using the notation π[i] for 0≤i≤2; when dealing with multiple propagators, πj[i] will denote element
i of the jth propagator.

Each signal si will now have associated with it a propagator, denoted πi. For signals which can
be members of multiple queues (such as start codons, which can be members of both the initial
exon queue and the single exon queue), the signal will have one propagator per queue, but it will be
clear from the context to which propagator we refer. Each queue will also have a propagator
associated with it, though for the sake of reducing ambiguity we will refer to these as accumulators
and represent them with the symbol α. The purpose of the accumulators is to reduce the number of
updates to individual signal propagators; otherwise, every signal propagator in every queue would
need to be updated at every position in the input sequence. The accumulator for a given queue will
accumulate additions to be made to the propagators of the signals currently in the queue. The
update of signal propagators from their queue’s accumulator is delayed as long as possible, as
described below. Accumulator scores are initialized to zero, as are the propagator scores for the left
terminus anchor signals; the general case of propagator initialization will be described shortly.

Updating of a propagator π from an accumulator α is simple in the case of a noncoding queue:

∀0≤ω≤2 π[ω]←π[ω]+α[0]. (13)

For coding queues, the update must take into account the location of the signal s associated with the
propagator π, in order to synchronize the periodic association between phase and array index:

∀0≤ω≤2 π[ω]←π[ω]+α[(ω-pos(s)-len(s))mod3], (14)

or, on the reverse strand:

∀0≤ω≤2 π[ω]←π[ω]+α[(ω+pos(s)+len(s))mod3]. (15)

Given a content sensor M, a coding accumulator can be updated according to the rule:

∀0≤ω≤2 α[ω]←α[ω]+log PM[(ω+f)mod3](xf), (16)

or, on the reverse strand:

∀0≤ω≤2 α[ω]←α[ω]+log PW[(ω-f)mod3](xf), (17)

where f is the position of the current nucleotide xf, PM[ω](xf) is the probability assigned to xf by the
content sensor M in phase ω, and W is the reverse-complementary model to M which computes the
probability of its parameter on the opposite strand and taking contexts from the right rather than
from the left. This update occurs once at each position along the input sequence. Use of f provides

 11

an absolute frame of reference when updating the accumulator. This is necessary because the
accumulator for a queue has no intrinsic notion of phase: unlike an individual signal, a queue is not
rooted at any particular location relative to the sequence.

For noncoding queues, only the 0th element of the accumulator must be updated:

α[0]←α[0]+log PM(xf). (18)

All that remains is to specify the rule for selecting an optimal predecessor and using it to
initialize a new signal’s propagator. We first consider new signals which terminate a putative exon.
Let si denote the predecessor under consideration and sj the new signal. Denote by ∆ the length of
the putative exon. Then on the forward strand, we can compare predecessors with respect to phase
ω via the scoring function RCI+RD+RT, where RD and RT are the duration and transition scores
described earlier and RCI includes the content score and the inductive score from the previous
signal:

∀0≤ω≤2 RCI(si,ω)←πi[(ω-∆)mod3]. (19)

On the reverse strand we have:

∀0≤ω≤2 RCI(si,ω)←πi[(ω+∆)mod3]. (20)

For introns it is still necessary to separate the three phase-specific scores to avoid greedy behavior,
though the phase does not change across an intron, so no ∆ term is necessary:

∀0≤ω≤2 RCI(si,ω)←πi[ω]. (21)

When the preceding feature is intergenic we need only refer to phase zero of the preceding stop
codon:

RCI(si,ω)←πi[0], (22)

or, on the reverse strand, phase 2 of the preceding start codon (since the leftmost base of the
reverse-strand start codon will reside in phase 2).

Once an optimal predecessor with score RCI+RD+RT is selected with respect to a given phase ω,
the appropriate element of the new signal’s propagator can be initialized directly:

πj[ω]←RCI(si,ω)+RD(si,sj)+RT(si,sj)+RS(sj), (23)

where RS(sj)=P(context(sj)|θj) is the score assigned to the context window of the new signal sj by the
appropriate signal sensor θj. An exception to Equation 23 occurs when ω is not a valid phase for
signal sj (e.g., phase 1 for a start codon), in which case we instead set πj[ω] to -∞.

One final complication arises from the fact that the algorithm, as we have presented it, does not
permit adjacent signals in a prospective parse to have overlapping signal sensor windows; to allow
such would be to permit double-counting of nucleotide probabilities, thereby biasing the
probabilistic scoring function. It is a simple matter to reformulate the algorithm so that signal
sensors score only the two or three consensus nucleotides of the signals under consideration; this
would allow adjacent signals in a prospective parse to be as close as possible without actually
overlapping (i.e., a single exon consisting of the sequence ATGTAG would be permitted, even if the
start codon and stop codon context windows overlapped). However, doing so might be expected to
decrease gene finder accuracy, for two reasons: (1) statistical biases occurring at fixed positions
relative to signals of a given type can in general be better exploited by a signal sensor specifically

 12

trained on such positions than by a content sensor trained on data pooled from many positions at
variable distances from the signal, and (2) in the case of Markov chains and Interpolated Markov
Models, probability estimates for nucleotides immediately following a signal can be inadvertently
conditioned on the few trailing nucleotides of the preceding feature (assuming the chain has a
sufficiently high order), even though the models are typically not trained accordingly. For these
reasons, we prefer to use signal sensors which impose a moderate margin around their respective
signals, both to detect any biologically relevant biases which might exist within those margins, and
to ensure that content sensors condition their probabilities only on nucleotides within the same
feature.

Given the foregoing, it is necessary to utilize a separate “holding queue” for signals which have
recently been detected by their signal sensors but which have context windows still overlapping the
current position in the DSP algorithm. The reason for this is that propagator updates via Equations
13-15 must not be applied to signals having context windows overlapping any nucleotides already
accounted for in the accumulator scores, since to do so would be to double-count probabilities. It is
therefore necessary to observe the following discipline.

Associated with each signal queue Gi there must be a separate holding queue, Hi. When a signal
is instantiated by a signal sensor it is added to the appropriate Hi rather than to Gi. As the algorithm
advances along the sequence, at each new position we must examine the contents of each holding
queue Hi to identify any signal having a context window which has now passed completely to the
left of the current position. If one or more such signals are identified, then we first update the
propagators of all the signals in the main queue Gi using Equations 13-15, then zero-out the values
of the accumulator αi for that queue, and then allow the recently passed signals to graduate from Hi
to Gi. Observe that at this point all the signals in Gi have in their propagators scores which have
effectively been propagated up to the same point in the sequence, and that point is immediately left
of the current position; this invariant is necessary for the proper operation of the algorithm. All
content sensors are then evaluated at the current position and their resulting single-nucleotide
scores are used to update the accumulators for their respective queues. Finally, whenever it
becomes necessary to evaluate the signals in some queue Gi as possible predecessors of a new
signal, we must first update the propagators of all the elements of Gi as described above, so that the
comparison will be based on fully propagated scores.

Equivalence of DSP and PSA
We now give a proof that DSP is mathematically equivalent to PSA, since it may not be entirely

obvious from the foregoing description. We will consider only the forward strand cases; the proof
for the reverse strand cases can be derived by a series of trivial substitutions in the proof below.

To begin, we show by induction that the signal propagator πj[ω] for signal sj is initialized to the
PSA inductive score RI(sj,ω). For the basis step, recall that the left terminus anchor signals were
initialized to have zero scores in both PSA and DSP, regardless of whether a given signal began a
coding or noncoding feature. In the case of coding features, substituting Equation 19 into Equation
23 yields:

πj[ω]←πi[(ω-∆)mod3]+RD(si,sj)+RT(si,sj)+RS(sj). (24)

According to Equation 10, this initialization will result in πj[ω]=RI(sj,ω) only if:

πi[(ω-∆)mod3]=RI(si,γi)+RC(si,sj,ω), (25)

where γi=(ω-∆)mod3 according to Equation 8. At the time that signal sj is instantiated by its signal
sensor, πi has been propagated up to e=wpos(sj)-1, the nucleotide just before the leftmost position
of the context window for sj. By the inductive hypothesis, πi[γi] was initialized to RI(si,γi). This
initialization occurred at the time when the current DSP position was at the beginning of the

 13

predecessor’s context window. Note, however, that πi effectively began receiving updates at
position b=wpos(si)+wlen(si), the position immediately following the end of the signal’s context
window, at which point si graduated from its holding queue. Thus, πi[γi] will have accumulated
content scores for positions b through e, inclusive. In order to establish Equation 25, we need to
show that these accumulations sum to precisely RC(si,sj,ω).

Substituting Equation 16 into Equation 14 we get the following formula describing propagator
updates as if they came directly from content sensor M:

∀0≤ω≤2 π[ω]←π[ω]+log PM[(ω+∆)mod3](xf), (26)

where ∆=f-(pos(si)+len(si)) is the distance between the rightmost end of signal si and the current
position f in the DSP algorithm. Let us introduce the notation:

F(i,j,ω)=∑k=i..jlog PM[(ω+k)mod3](xk). (27)

Using this notation, πi[γi] has since its initialization accumulated F(b,e,γi-pos(si)-len(si)); this can
be verified by expanding this expression via Equation 27 and observing that the result equals a
summation of the log term in Equation 26 over f=b to e. Looking at init_phased(), it should be
obvious that the effect of lines 5 and 8 will be that:

αi,γ[h] = ∑k=0..hlog PM[(k+γ)mod3](xk) = F(0,h,γ). (28)

According to Equation 5, showing that πi[γi] has accumulated RC(si,sj,ω) is therefore equivalent to:

F(b,e,ψ) = F(0,wpos(sj)-1,γ) - F(0,wpos(si)+wlen(si)-1,γ), (29)

where ψ=γi-pos(si)-len(si) and γ=ω-pos(sj). Equivalently:

F(b,e,ψ) = F(0,e,γ) – F(0,b-1,γ). (30)

To see that ψ≡γ(mod3), observe that pos(sj)-(pos(si)+len(si))=∆, the length of the putative exon
(possibly shortened by three bases, in the case where si is a start codon), and further that γi-ω≡-
∆(mod3) according to Equation 8, so that ψ-γ≡∆-∆≡0(mod3). Thus, Equation 30 is equivalent to:

F(b,e,γ) = F(0,e,γ) – F(0,b-1,γ), (31)

which can be established as a tautology by simple algebra after expansion with Equation 27. This
shows that the signal propagator for signal sj is initialized to the PSA inductive score RI(sj,ω), and
thus establishes the inductive step of the proof in the case of coding features.

To see that the above arguments also hold for noncoding features, note that Equation 21
simplifies Equation 25 to:

πi[ω]=RI(si,ω)+RC(si,sj), (32)

that Equations 13 and 18 combine to simplify Equation 26 to:

∀0≤ω≤2 π[ω]←π[ω]+log PM(xf), (33)

and that lines 4 and 6 of init_nonphased() cause:

 14

αi[h] = ∑k=0..hlog PM(xk) = FNC(0,h), (34)

for FNC(i,j)=∑k=i..jlog PM(xk). We can thus reformulate Equation 29 as:

FNC(b,e) = FNC(0,wpos(scur)-1) - FNC(0,wpos(spred)+wlen(spred)-1), (35)

or, equivalently:

FNC(b,e) = FNC(0,e) – FNC(0,b-1), (36)

which is again a tautology. In the interests of brevity, we leave it up to the reader to verify that the
above arguments still apply when the noncoding features are intergenic, thereby invoking Equation
22 rather than Equation 21 in formulating Equation 31.

To see that the selection of optimal predecessors is also performed identically in the two
algorithms, note that the PSA criterion given in Equation 7 is equivalent to the argmax(RCI+RD+RT
) criterion of DSP as long as RCI(si,ω)=RC(si,sj,ω)+RI(si,γi) at the time the optimal predecessor is
selected, which we have in fact already shown by establishing Equation 25.

Thus, DSP and PSA build identical trellises; application of the same traceback() procedure
should therefore produce identical gene predictions.

Fast decoding of Markov chains
Markov chains are typically implemented in GHMM-based gene finders using hash tables, due to
the simplicity of such an implementation. Thus, for a given Markov chain M we may utilize a hash
table which associates the probability PM(xj|xj-n..xj-1) with the sequence xj-n..xj. Although hash tables
provide a relatively efficient solution for this task, they are wasteful in the sense that as we evaluate
the chain on successive nucleotides in a sequence, we repeatedly manipulate preceding nucleotides
in forming successive substrings to be indexed into the hash table.

A much faster (and much more elegant) solution is to employ a Finite State Machine (FSM) in
which states exist for all possible sequences of length n+1 or less, and where the state having label
xj-n..xj emits the probability PM(xj|xj-n..xj-1), for nth-order Markov chain M. In this way, the transition
probabilities of the Markov chain become the state emissions of the FSM. During a single left-to-
right scan of a sequence, each base requires only a single two-dimensional array indexing operation
to access the desired probability, and a single integer value store operation to remember the identity
of the new state. When compared to the typical regime of arithmetic and bit-shift operations over
an (n+1)-element string that would be required for a typical hash function, the difference can be
significant.

Implementing this optimization is fairly straightforward, both for conventional Markov chains
and for Interpolated Markov Models, whether homogeneous or three-periodic. Central to the
method is a means of mapping between state labels and integer state identifiers for use in indexing
into the transition table. The base-4 number system can be utilized for this purpose, assuming a
nucleotide mapping such as ∇={A↔0, C↔1, G↔2, T↔3}. To account for lower-order states,
define:

∑
−

=

=
1

0
4)(

L

i

iLB , (37)

which gives the total number of strings of length less than L. Converting a string S=x0..xL-1 to base-
4 can be accomplished as follows:

 15

∑
−

=
−−∇=

1

0
1)(4)(

L

i
iL

i xSλ . (38)

Now a string S can be mapped to a state index using:

state(S)=B(|S|)+λ(S), (39)

where |S| denotes the length of S.

Given this integer↔label mapping and an nth-order Markov chain in hash table format, the FSM
state emissions can be initialized by indexing state labels into the hash table to obtain the Markov
chain transition probabilities. The transition table can be initialized fairly simply by noting that the
successor of state x0..xL-1 upon seeing symbol s is x1..xL-1s if L=n+1, or x0..xL-1s for L<n+1. A
model for the reverse strand can be handled by applying this scheme in reverse, so that the state
with label xj-n..xj emits the probability PM(xj-n|xj-n+1..xj), and the lower-order states are reserved for
the end of the sequence rather than the beginning.

Results
Table 1 shows the memory and time requirements for two GHMM gene finders, one using the

PSA algorithm and the other the DSP algorithm, on a 922 Kb sequence. Note that the DSP gene
finder has 31 states, while the PSA gene finder explicitly evaluates only 6 states, so that they both
give a ratio of 2.8 seconds per state on this sequence, while the ratio of memory per state is 14 Mb
for the PSA gene finder and 0.95 Mb for the DSP gene finder. Thus, the DSP and PSA algorithms
appear to consume the same amount of time per state, while DSP requires only a fraction of the
memory (per state) as PSA.

 RAM
(Mb)

RAM/state
(Mb)

Time,
min:sec

seconds/
state

31-state DSP 29 0.95 1:28 2.8
6-state PSA 84 14 0:17 2.8

Table 1 - Space and time requirements for two gene finders
Two gene finders, the 31-state DSP gene finder TIGRscan, and the 6-state PSA gene finder
GlimmerHMM, were run on a 922 Kb sequence. The DSP gene finder used raw probabilities and
the PSA gene finder used log-likelihood ratios. The DSP implementation required less memory,
both in total and per state, than the PSA implementation. Although the PSA implementation
required less total time, the DSP implementation required the same amount of time per state, so
that for a given gene finder with a fixed number of states, DSP decoding can be expected to be
fully as fast as PSA decoding.

Table 2 shows the results of applying the FSM optimization to a DSP gene finder to accelerate

its content sensors. As can be seen from the table, the FSM approach reduces execution time by
more than half (as compared to a hash table implementation), while also reducing total RAM usage.
The DSP/FSM configuration reported here utilized both conventional Markov chains as well as
Interpolated Markov Models, both represented using FSMs. Note that the hashing software used for
comparison was a very efficient implementation which used native C character arrays; in particular,
we did not use the C++ Standard Template Library (STL) implementations of string and hash, due
to efficiency concerns regarding the re-copying of string arguments to the hash function. Our
custom string hashing implementation was found to be much faster than the STL implementation
(data not shown). Accordingly, one can expect an FSM implementation to show even greater gains
as compared to an STL-based hashing implementation.

 16

 time (min:sec) total RAM
DSP/Hash 1:15 53 Mb
DSP/FSM 0:34 44 Mb

Table 2 - Efficiency of Markov chain implementations
Execution time for a 31-state GHMM gene finder utilizing hash tables or FSMs for its content
sensors, applied to a 1.8 Mb sequence. The FSM implementation was over twice as fast as the
hash table implementation, and required significantly less memory.

We utilized our DSP-based gene finder TIGRscan [5] in the construction of our syntenic gene

finder TWAIN, a Generalized Pair HMM which performs gene prediction in two genomes
simultaneously. TWAIN operates by invoking a modified version of TIGRscan to build a directed
acyclic graph of all high-scoring parses of each of the two input sequences. Early experiments
indicated that these parse graphs could be quite large in practice and may therefore require a
significant portion of available RAM for their storage. In addition, the dynamic programming
matrix used by TWAIN promised to be large as well. It was in anticipation of this problem that we
were prompted to develop TIGRscan using the DSP architecture, to minimize the memory
requirements of the underlying GHMM, thereby freeing the remaining available memory for use by
the rest of the machinery within TWAIN.

As a result of these and other optimizations (such as our use of a sparse matrix representation
for TWAIN’s dynamic programming algorithm) we were able to apply TWAIN’s gene prediction
component to a pair of fungal genomes (Aspergillus fumigatus and A. nidulans) while consuming
under 50 Mb of RAM, whereas an earlier prototype of this system applied to the same input data
routinely exhausted all available memory on a computer with 1 Gb of RAM. We are hopeful that
through the use of optimizations such as those described here we will be able to apply TWAIN to
other pairs of genomes with longer genes, and possibly extend the program to handle more than
two species simultaneously.

Conclusions
In describing a number of optimizations for GHMM-based gene finders and making available two
complete open-source software systems embodying these methods, it is our hope that others will be
more enabled to explore promising extensions to the GHMM framework, thereby improving the
state-of-the-art in gene prediction techniques.

Availability and requirements

 * Project name: TIGRscan, GlimmerHMM
 * Project home page: http://www.tigr.org/software/pirate
 * Operating system(s): Linux/UNIX
 * Programming language: C/C++
 * Other requirements: compiled using gcc 3.3.3
 * License: Artistic License, see http://www.opensource.org
 * Any restrictions to use by non-academics: terms of Artistic License

 17

http://www.tigr.org/software/pirate
http://www.opensource.org/

Authors' contributions
The DSP algorithm was devised by WHM, who also performed the computational experiments and
wrote the manuscript. The PSA gene finder GlimmerHMM was implemented by MP. MP, ALD,
and SLS provided detailed insights into the PSA architecture and provided valuable comments on
the manuscript.

Acknowledgements
This work was supported in part by NIH grants R01-LM06845 and R01-LM007938.

References
1. Kulp D, Haussler D, Reese MG, Eeckman FH: A generalized hidden Markov model for

the recognition of human genes in DNA. In: Proceedings of the fourth International
Conference on Intelligent Systems for Molecular Biology 1996:134-142.

2. Burge C: Identification of Genes in Human Genomic DNA. PhD Thesis. Department of
Mathematics, Stanford University; 1997.

3. Cawley SE, Wirth AI, Speed TP: Phat—a gene finding program for Plasmodium
falciparum. Mol & Biochem Parasitology 118, 2001:167-174.

4. Stanke M, Waack S: Gene prediction with a hidden Markov model and a new intron
submodel. Bioinformatics 19, 2003:II215-II225.

5. Majoros WM, Pertea M, Salzberg SL: TIGRscan and GlimmerHMM: two open-source
ab initio eukaryotic gene finders. Bioinformatics 20, 2004:2878-2879.

6. Korf I: Gene finding in novel genomes. BMC Bioinf 5, 2004:59.
7. Pachter L, Alexandersson M, Cawley S: Applications of generalized pair hidden Markov

models to alignment and gene finding problems. J Comput Biol 9, 2002:389-399.
8. Alexandersson M, Cawley S, Pachter L: SLAM: Cross-species gene finding and

alignment with a generalized pair hidden Markov model. Genome Res 13, 2003:496-
502.

9. Rabiner LR, Juang B-H: An introduction to hidden Markov models. IEEE Transactions
on Acoustics Speech, Signal Processing 3, 1986:4-16.

10. Rabiner LR: A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE 77, 1989:257-286.

11. Salzberg SL, Searls DB, Kasif S: Computational Methods in Molecular Biology.
Amsterdam: Elsevier; 1998.

12. Durbin R, Eddy S, Krogh A, Mitchison G: Biological Sequence Analysis. Cambridge
University Press; 1998.

13. Burge C, Karlin S: Prediction of complete gene structures in human genomic DNA. J
Mol Biol 268, 1997:78-94.

14. Salzberg SL, Pertea M, Delcher AL, Gardner MJ, Tettelin H: Interpolated Markov models
for eukaryotic gene finding. Genomics 59, 1999:24-31.

 18

	Efficient decoding algorithms for generalized hidden Markov
	Abstract
	Background
	Results
	Conclusions

	Background
	Modeling genes with a GHMM

	Implementation
	The PSA decoding algorithm
	Figure 1 - An example GHMM topology
	Figure 2 - Non-overlapping of content and signal sensors
	Figure 3 - The init_nonphased() algorithm
	Figure 4 - The init_phased() algorithm
	Figure 5 - The eclipse() algorithm
	Figure 6 - The traceback() algorithm
	The DSP decoding algorithm
	Equivalence of DSP and PSA
	Fast decoding of Markov chains

	Results
	Table 1 - Space and time requirements for two gene finders
	Table 2 - Efficiency of Markov chain implementations

	Conclusions
	Availability and requirements
	Authors' contributions
	The DSP algorithm was devised by WHM, who also performed the
	Acknowledgements
	References

